IMO Shortlist 1988 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a be the greatest positive root of the equation x^3 - 3 \cdot x^2 + 1 = 0. Show that \left[a^{1788} \right] and \left[a^{1988} \right] are both divisible by 17. Here [x] denotes the integer part of x.
Izvor: Međunarodna matematička olimpijada, shortlist 1988