IMO Shortlist 1988 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In a triangle ABC, choose any points K \in BC, L \in AC, M \in AB, N \in LM, R \in MK and F \in KL. If E_1, E_2, E_3, E_4, E_5, E_6 and E denote the areas of the triangles AMR, CKR, BKF, ALF, BNM, CLN and ABC respectively, show that
E \geq 8 \cdot \sqrt [6]{E_1 E_2 E_3 E_4 E_5 E_6}.
Izvor: Međunarodna matematička olimpijada, shortlist 1988