IMO Shortlist 1988 problem 22


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let p be the product of two consecutive integers greater than 2. Show that there are no integers x_1, x_2, \ldots, x_p satisfying the equation
\sum^p_{i = 1} x^2_i - \frac {4}{4 \cdot p + 1} \left( \sum^p_{i = 1} x_i \right)^2 = 1
OR

Show that there are only two values of p for which there are integers x_1, x_2, \ldots, x_p satisfying
\sum^p_{i = 1} x^2_i - \frac {4}{4 \cdot p + 1} \left( \sum^p_{i = 1} x_i \right)^2 = 1
Izvor: Međunarodna matematička olimpijada, shortlist 1988