IMO Shortlist 1988 problem 24


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \{a_k\}^{\infty}_1 be a sequence of non-negative real numbers such that:
a_k - 2 \cdot a_{k + 1} + a_{k + 2} \geq 0
and \sum^k_{j = 1} a_j \leq 1 for all k = 1,2, \ldots. Prove that:
0 \leq (a_{k} - a_{k + 1}) < \frac {2}{k^2}
for all k = 1,2, \ldots.
Izvor: Međunarodna matematička olimpijada, shortlist 1988