IMO Shortlist 1988 problem 27


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Let ABC be an acute-angled triangle. Let L be any line in the plane of the triangle ABC. Denote by u, v, w the lengths of the perpendiculars to L from A, B, C respectively. Prove the inequality u^2\cdot\tan A + v^2\cdot\tan B + w^2\cdot\tan C\geq 2\cdot S, where S is the area of the triangle ABC. Determine the lines L for which equality holds.
Izvor: Međunarodna matematička olimpijada, shortlist 1988