IMO Shortlist 1988 problem 30


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A point M is chosen on the side AC of the triangle ABC in such a way that the radii of the circles inscribed in the triangles ABM and BMC are equal. Prove that
BM^{2} = X \cot \left( \frac {B}{2}\right)
where X is the area of triangle ABC.
Izvor: Međunarodna matematička olimpijada, shortlist 1988