IMO Shortlist 1989 problem 10
Dodao/la:
arhiva2. travnja 2012. Let
,
,
,
, and
. Show that there is one and only one function
such that
%V0
Let $g: \mathbb{C} \rightarrow \mathbb{C}$, $\omega \in \mathbb{C}$, $a \in \mathbb{C}$, $\omega^3 = 1$, and $\omega \ne 1$. Show that there is one and only one function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
$$f(z) + f(\omega z + a) = g(z),z\in \mathbb{C}$$
Izvor: Međunarodna matematička olimpijada, shortlist 1989