IMO Shortlist 1989 problem 15


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a, b, c, d,m, n \in \mathbb{Z}^+ such that a^2+b^2+c^2+d^2 = 1989,
a+b+c+d = m^2, and the largest of a, b, c, d is n^2. Determine, with proof, the values of m and n.
Izvor: Međunarodna matematička olimpijada, shortlist 1989