IMO Shortlist 1989 problem 25


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a, b \in \mathbb{Z} which are not perfect squares. Prove that if x^2 - ay^2 - bz^2 + abw^2 = 0 has a nontrivial solution in integers, then so does x^2 - ay^2 - bz^2 = 0.
Izvor: Međunarodna matematička olimpijada, shortlist 1989