IMO Shortlist 1989 problem 31


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_1 \geq a_2 \geq a_3 \in \mathbb{Z}^+ be given and let N(a_1, a_2, a_3) be the number of solutions (x_1, x_2, x_3) of the equation

\sum^3_{k=1} \frac{a_k}{x_k} = 1.

where x_1, x_2, and x_3 are positive integers. Prove that N(a_1, a_2, a_3) \leq 6 a_1 a_2 (3 + ln(2 a_1)).
Izvor: Međunarodna matematička olimpijada, shortlist 1989