IMO Shortlist 1990 problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Assume that the set of all positive integers is decomposed into r (disjoint) subsets A_1 \cup A_2 \cup \ldots \cup A_r = \mathbb{N}. Prove that one of them, say A_i, has the following property: There exists a positive m such that for any k one can find numbers a_1, a_2, \ldots, a_k in A_i with 0 < a_{j + 1} - a_j \leq m, (1 \leq j \leq k - 1).
Izvor: Međunarodna matematička olimpijada, shortlist 1990