IMO Shortlist 1990 problem 5
Dodao/la:
arhiva2. travnja 2012. Given a triangle
. Let
,
,
be the centroid, the incenter and the orthocenter of triangle
, respectively. Prove that
.
%V0
Given a triangle $ABC$. Let $G$, $I$, $H$ be the centroid, the incenter and the orthocenter of triangle $ABC$, respectively. Prove that $\angle GIH > 90^{\circ}$.
Izvor: Međunarodna matematička olimpijada, shortlist 1990