IMO Shortlist 1990 problem 26


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let p(x) be a cubic polynomial with rational coefficients. q_1, q_2, q_3, ... is a sequence of rationals such that q_n = p(q_{n + 1}) for all positive n. Show that for some k, we have q_{n + k} = q_n for all positive n.
Izvor: Međunarodna matematička olimpijada, shortlist 1990