IMO Shortlist 1991 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
S be a set of n points in the plane. No three points of S are collinear. Prove that there exists a set P containing 2n - 5 points satisfying the following condition: In the interior of every triangle whose three vertices are elements of S lies a point that is an element of P.
Izvor: Međunarodna matematička olimpijada, shortlist 1991