IMO Shortlist 1991 problem 13
Dodao/la:
arhiva2. travnja 2012. Let

be integers and

an odd prime number. Prove that if

is a perfect square for

consecutive integer values of

then

divides
%V0
Let $a, b, c$ be integers and $p$ an odd prime number. Prove that if $f(x) = ax^2 + bx + c$ is a perfect square for $2p - 1$ consecutive integer values of $x,$ then $p$ divides $b^2 - 4ac.$
Izvor: Međunarodna matematička olimpijada, shortlist 1991