IMO Shortlist 1991 problem 14
Dodao/la:
arhiva2. travnja 2012. Let

be the last nonzero digit in the decimal representation of the number

Does the sequence

become periodic after a finite number of terms?
%V0
Let $a_n$ be the last nonzero digit in the decimal representation of the number $n!.$ Does the sequence $a_1, a_2, \ldots, a_n, \ldots$ become periodic after a finite number of terms?
Izvor: Međunarodna matematička olimpijada, shortlist 1991