IMO Shortlist 1991 problem 19


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \alpha be the positive root of the equation x^{2} = 1991x + 1. For natural numbers m and n define
m*n = mn + \lfloor\alpha m \rfloor \lfloor \alpha n\rfloor.
Prove that for all natural numbers p, q, and r,
(p*q)*r = p*(q*r).
Izvor: Međunarodna matematička olimpijada, shortlist 1991