IMO Shortlist 1991 problem 20


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f(x) be a monic polynomial of degree 1991 with integer coefficients. Define g(x) = f^2(x) - 9. Show that the number of distinct integer solutions of g(x) = 0 cannot exceed 1995.
Izvor: Međunarodna matematička olimpijada, shortlist 1991