IMO Shortlist 1991 problem 22


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f and g be two integer-valued functions defined on the set of all integers such that

(a) f(m + f(f(n))) = -f(f(m+ 1) - n for all integers m and n;
(b) g is a polynomial function with integer coefficients and g(n) = g(f(n)) \forall n \in \mathbb{Z}.
Izvor: Međunarodna matematička olimpijada, shortlist 1991