IMO Shortlist 1991 problem 24


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Suppose that n \geq 2 and x_1, x_2, \ldots, x_n are real numbers between 0 and 1 (inclusive). Prove that for some index i between 1 and n - 1 the
inequality

x_i (1 - x_{i+1}) \geq \frac{1}{4} x_1 (1 - x_{n})
Izvor: Međunarodna matematička olimpijada, shortlist 1991