IMO Shortlist 1991 problem 25
Dodao/la:
arhiva2. travnja 2012. %V0
Let $n \geq 2, n \in \mathbb{N}$ and let $p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ satisfying $\frac{1}{2} \leq p \leq 1,$ $0 \leq a_i,$ $0 \leq b_i \leq p,$ $i = 1, \ldots, n,$ and $$\sum^n_{i=1} a_i = \sum^n_{i=1} b_i.$$ Prove the inequality: $$\sum^n_{i=1} b_i \prod^n_{j = 1, j \neq i} a_j \leq \frac{p}{(n-1)^{n-1}}.$$
Izvor: Međunarodna matematička olimpijada, shortlist 1991