IMO Shortlist 1991 problem 26
Dodao/la:
arhiva2. travnja 2012. Determine the maximum value of the sum
over all

tuples

satisfying

and
%V0
Determine the maximum value of the sum
$$\sum_{i < j} x_ix_j (x_i + x_j)$$
over all $n -$tuples $(x_1, \ldots, x_n),$ satisfying $x_i \geq 0$ and $\sum^n_{i = 1} x_i = 1.$
Izvor: Međunarodna matematička olimpijada, shortlist 1991