IMO Shortlist 1992 problem 2


Kvaliteta:
  Avg: 2,5
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \mathbb{R}^+ be the set of all non-negative real numbers. Given two positive real numbers a and b, suppose that a mapping f: \mathbb{R}^+ \mapsto \mathbb{R}^+ satisfies the functional equation:

f(f(x)) + af(x) = b(a + b)x.

Prove that there exists a unique solution of this equation.
Izvor: Međunarodna matematička olimpijada, shortlist 1992