IMO Shortlist 1992 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f, g and a be polynomials with real coefficients, f and g in one variable and a in two variables. Suppose

f(x) - f(y) = a(x, y)(g(x) - g(y)) \forall x,y \in \mathbb{R}

Prove that there exists a polynomial h with f(x) = h(g(x)) \text{ } \forall x \in \mathbb{R}.
Izvor: Međunarodna matematička olimpijada, shortlist 1992