IMO Shortlist 1993 problem A1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Define a sequence <f(n)>^{\infty}_{n=1} of positive integers by f(1) = 1 and

{{ INVALID LATEX }}

for n \geq 2. Let S = \{n \in \mathbb{N} | f(n) = 1993\}.

(i) Prove that S is an infinite set.
(ii) Find the least positive integer in S.
(iii) If all the elements of S are written in ascending order as n_1 < n_2 < n_3 < \ldots , show that \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3.
Izvor: Međunarodna matematička olimpijada, shortlist 1993