IMO Shortlist 1993 problem A2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Show that there exists a finite set A \subset \mathbb{R}^2 such that for every X \in A there are points Y_1, Y_2, \ldots, Y_{1993} in A such that the distance between X and Y_i is equal to 1, for every i.
Izvor: Međunarodna matematička olimpijada, shortlist 1993