IMO Shortlist 1993 problem A3
Dodao/la:
arhiva2. travnja 2012. Prove that

for all positive real numbers

.
%V0
Prove that $$\frac{a}{b+2c+3d} +\frac{b}{c+2d+3a} +\frac{c}{d+2a+3b}+ \frac{d}{a+2b+3c} \geq \frac{2}{3}$$ for all positive real numbers $a,b,c,d$.
Izvor: Međunarodna matematička olimpijada, shortlist 1993