IMO Shortlist 1993 problem A5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
a > 0 and b, c are integers such that acb^2 is a square-free positive integer P. For example P could be 3*5, but not 3^2*5. Let f(n) be the number of pairs of integers d, e such that ad^2 + 2bde + ce^2= n. Show thatf(n) is finite and that f(n) = f(P^{k}n) for every positive integer k.

Original Statement:

Let a,b,c be given integers a > 0, ac-b^2 = P = P_1 \cdots P_n where P_1 \cdots P_n are (distinct) prime numbers. Let M(n) denote the number of pairs of integers (x,y) for which ax^2 + 2bxy + cy^2 = n. Prove that M(n) is finite and M(n) = M(P_k \cdot n) for every integer k \geq 0. Note that the "n" in P_N and the "n" in M(n) do not have to be the same.
Izvor: Međunarodna matematička olimpijada, shortlist 1993