IMO Shortlist 1993 problem G4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Given a triangle ABC, let D and E be points on the side BC such that \angle BAD = \angle CAE. If M and N are, respectively, the points of tangency of the incircles of the triangles ABD and ACE with the line BC, then show that
\frac{1}{MB}+\frac{1}{MD}= \frac{1}{NC}+\frac{1}{NE}.
Izvor: Međunarodna matematička olimpijada, shortlist 1993