IMO Shortlist 1993 problem G8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The vertices D,E,F of an equilateral triangle lie on the sides BC,CA,AB respectively of a triangle ABC. If a,b,c are the respective lengths of these sides, and S the area of ABC, prove that

DE \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^2 + b^2 + c^2 + 4 \cdot \sqrt{3} \cdot S}}.
Izvor: Međunarodna matematička olimpijada, shortlist 1993