IMO Shortlist 1994 problem A4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \mathbb{R} denote the set of all real numbers and \mathbb{R}^+ the subset of all positive ones. Let \alpha and \beta be given elements in \mathbb{R}, not necessarily distinct. Find all functions f: \mathbb{R}^+ \mapsto \mathbb{R} such that

f(x)f(y) = y^{\alpha} f \left( \frac{x}{2} \right) + x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^+.
Izvor: Međunarodna matematička olimpijada, shortlist 1994