IMO Shortlist 1994 problem A4
Dodao/la:
arhiva2. travnja 2012. Let
denote the set of all real numbers and
the subset of all positive ones. Let
and
be given elements in
not necessarily distinct. Find all functions
such that
%V0
Let $\mathbb{R}$ denote the set of all real numbers and $\mathbb{R}^+$ the subset of all positive ones. Let $\alpha$ and $\beta$ be given elements in $\mathbb{R},$ not necessarily distinct. Find all functions $f: \mathbb{R}^+ \mapsto \mathbb{R}$ such that
$$f(x)f(y) = y^{\alpha} f \left( \frac{x}{2} \right) + x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^+.$$
Izvor: Međunarodna matematička olimpijada, shortlist 1994