IMO Shortlist 1995 problem A5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \mathbb{R} be the set of real numbers. Does there exist a function f: \mathbb{R} \mapsto \mathbb{R} which simultaneously satisfies the following three conditions?

(a) There is a positive number M such that \forall x: - M \leq f(x) \leq M.
(b) The value of f(1) is 1.
(c) If x \neq 0, then
f \left(x + \frac {1}{x^2} \right) = f(x) + \left[ f \left(\frac {1}{x} \right) \right]^2
Izvor: Međunarodna matematička olimpijada, shortlist 1995