IMO Shortlist 1995 problem G2


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 5,5
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let A, B and C be non-collinear points. Prove that there is a unique point X in the plane of ABC such that XA^2 + XB^2 + AB^2 = XB^2 + XC^2 + BC^2 = XC^2 + XA^2 + CA^2.
Izvor: Međunarodna matematička olimpijada, shortlist 1995