IMO Shortlist 1995 problem NC2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \mathbb{Z} denote the set of all integers. Prove that for any integers A and B, one can find an integer C for which M_1 = \{x^2 + Ax + B : x \in \mathbb{Z}\} and M_2 = {2x^2 + 2x + C : x \in \mathbb{Z}} do not intersect.
Izvor: Međunarodna matematička olimpijada, shortlist 1995