IMO Shortlist 1995 problem S1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Does there exist a sequence F(1), F(2), F(3), \ldots of non-negative integers that simultaneously satisfies the following three conditions?

(a) Each of the integers 0, 1, 2, \ldots occurs in the sequence.
(b) Each positive integer occurs in the sequence infinitely often.
(c) For any n \geq 2,
F(F(n^{163})) = F(F(n)) + F(F(361)).
Izvor: Međunarodna matematička olimpijada, shortlist 1995