IMO Shortlist 1996 problem G8
Dodao/la:
arhiva2. travnja 2012. Let
be a convex quadrilateral, and let
denote the circumradii of the triangles
respectively. Prove that
if and only if
%V0
Let $ABCD$ be a convex quadrilateral, and let $R_A, R_B, R_C, R_D$ denote the circumradii of the triangles $DAB, ABC, BCD, CDA,$ respectively. Prove that $R_A + R_C > R_B + R_D$ if and only if $\angle A + \angle C > \angle B + \angle D.$
Izvor: Međunarodna matematička olimpijada, shortlist 1996