IMO Shortlist 1996 problem G9


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 10,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In the plane, consider a point X and a polygon \mathcal{F} (which is not necessarily convex). Let p denote the perimeter of \mathcal{F}, let d be the sum of the distances from the point X to the vertices of \mathcal{F}, and let h be the sum of the distances from the point X to the sidelines of \mathcal{F}. Prove that d^2 - h^2\geq\frac {p^2}{4}.
Izvor: Međunarodna matematička olimpijada, shortlist 1996