IMO Shortlist 1997 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let R_1,R_2, \ldots be the family of finite sequences of positive integers defined by the following rules: R_1 = (1), and if R_{n - 1} = (x_1, \ldots, x_s), then

R_n = (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).

For example, R_2 = (1, 2), R_3 = (1, 1, 2, 3), R_4 = (1, 1, 1, 2, 1, 2, 3, 4). Prove that if n > 1, then the kth term from the left in R_n is equal to 1 if and only if the kth term from the right in R_n is different from 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1997