IMO Shortlist 1997 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let P(x) be a polynomial with real coefficients such that P(x) > 0 for all x \geq 0. Prove that there exists a positive integer n such that (1 + x)^n \cdot P(x) is a polynomial with nonnegative coefficients.
Izvor: Međunarodna matematička olimpijada, shortlist 1997