IMO Shortlist 1997 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let p be a prime number and f an integer polynomial of degree d such that f(0) = 0,f(1) = 1 and f(n) is congruent to 0 or 1 modulo p for every integer n. Prove that d\geq p - 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1997