IMO Shortlist 1997 problem 14
Dodao/la:
arhiva2. travnja 2012. Let
![b, m, n](/media/m/9/b/8/9b8acc4a02c6b23979626ffbe14d7814.png)
be positive integers such that
![b > 1](/media/m/8/5/b/85b6cfab63ac4b9adf62b72ffc296082.png)
and
![m \neq n.](/media/m/9/5/7/95766d74e7d0c1617f21567596a43d1d.png)
Prove that if
![b^m - 1](/media/m/9/4/1/94180e750b52bd6ec2edec834aa8602c.png)
and
![b^n - 1](/media/m/8/e/4/8e4320336b7031cddbcf3f4d631e945f.png)
have the same prime divisors, then
![b + 1](/media/m/5/9/a/59a1292a00a04abeef618a7a4ce65fbf.png)
is a power of 2.
%V0
Let $b, m, n$ be positive integers such that $b > 1$ and $m \neq n.$ Prove that if $b^m - 1$ and $b^n - 1$ have the same prime divisors, then $b + 1$ is a power of 2.
Izvor: Međunarodna matematička olimpijada, shortlist 1997