IMO Shortlist 1997 problem 16


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In an acute-angled triangle ABC, let AD,BE be altitudes and AP,BQ internal bisectors. Denote by I and O the incenter and the circumcentre of the triangle, respectively. Prove that the points D, E, and I are collinear if and only if the points P, Q, and O are collinear.
Izvor: Međunarodna matematička olimpijada, shortlist 1997