IMO Shortlist 1997 problem 19


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 5,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_1\geq \cdots \geq a_n \geq a_{n + 1} = 0 be real numbers. Show that
\sqrt {\sum_{k = 1}^n a_k} \leq \sum_{k = 1}^n \sqrt k (\sqrt {a_k} - \sqrt {a_{k + 1}}).
Proposed by Romania
Izvor: Međunarodna matematička olimpijada, shortlist 1997