IMO Shortlist 1997 problem 20


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle. D is a point on the side (BC). The line AD meets the circumcircle again at X. P is the foot of the perpendicular from X to AB, and Q is the foot of the perpendicular from X to AC. Show that the line PQ is a tangent to the circle on diameter XD if and only if AB = AC.
Izvor: Međunarodna matematička olimpijada, shortlist 1997