IMO Shortlist 1997 problem 23
Dodao/la:
arhiva2. travnja 2012. Let
be a convex quadrilateral. The diagonals
and
intersect at
. Show that
is cyclic if and only if
.
%V0
Let $ABCD$ be a convex quadrilateral. The diagonals $AC$ and $BD$ intersect at $K$. Show that $ABCD$ is cyclic if and only if $AK \sin A + CK \sin C = BK \sin B + DK \sin D$.
Izvor: Međunarodna matematička olimpijada, shortlist 1997