IMO Shortlist 1997 problem 23
Dodao/la:
arhiva2. travnja 2012. Let

be a convex quadrilateral. The diagonals

and

intersect at

. Show that

is cyclic if and only if

.
%V0
Let $ABCD$ be a convex quadrilateral. The diagonals $AC$ and $BD$ intersect at $K$. Show that $ABCD$ is cyclic if and only if $AK \sin A + CK \sin C = BK \sin B + DK \sin D$.
Izvor: Međunarodna matematička olimpijada, shortlist 1997