IMO Shortlist 1997 problem 26


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
For every integer n \geq 2 determine the minimum value that the sum \sum^n_{i=0} a_i can take for nonnegative numbers a_0, a_1, \ldots, a_n satisfying the condition a_0 = 1, a_i \leq a_{i+1} + a_{i+2} for i = 0, \ldots, n - 2.
Izvor: Međunarodna matematička olimpijada, shortlist 1997