IMO Shortlist 1998 problem A2


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 6,5
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let r_{1},r_{2},\ldots ,r_{n} be real numbers greater than or equal to 1. Prove that

\frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}.
Izvor: Međunarodna matematička olimpijada, shortlist 1998