IMO Shortlist 1998 problem A3
Dodao/la:
arhiva2. travnja 2012. Let

and

be positive real numbers such that

. Prove that
%V0
Let $x,y$ and $z$ be positive real numbers such that $xyz=1$. Prove that
$$\frac{x^{3}}{(1 + y)(1 + z)}+\frac{y^{3}}{(1 + z)(1 + x)}+\frac{z^{3}}{(1 + x)(1 + y)} \geq \frac{3}{4}.$$
Izvor: Međunarodna matematička olimpijada, shortlist 1998