IMO Shortlist 1998 problem A3


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let x,y and z be positive real numbers such that xyz=1. Prove that


\frac{x^{3}}{(1 + y)(1 + z)}+\frac{y^{3}}{(1 + z)(1 + x)}+\frac{z^{3}}{(1 + x)(1 + y)}  \geq \frac{3}{4}.
Izvor: Međunarodna matematička olimpijada, shortlist 1998