IMO Shortlist 1998 problem G6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCDEF be a convex hexagon such that \angle B+\angle D+\angle F=360^{\circ } and \frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1. Prove that \frac{BC}{CA} \cdot \frac{AE}{EF} \cdot \frac{FD}{DB} = 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1998