IMO Shortlist 1998 problem N2
Dodao/la:
arhiva2. travnja 2012. Determine all pairs

of real numbers such that

for all positive integers

. (Note that

denotes the greatest integer less than or equal to

.)
%V0
Determine all pairs $(a,b)$ of real numbers such that $a \lfloor bn \rfloor =b \lfloor an \rfloor$ for all positive integers $n$. (Note that $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.)
Izvor: Međunarodna matematička olimpijada, shortlist 1998